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Introduction. Recently I had occasion to describe1 a method for computing the
energy spectrum

En = E0
n + λE1

n + λ2E2
n + · · · (1)

of a perturbed quantum system

H = H0 + λV

which—in sharp contrast to the familiar Rayleigh-Schrödinger method—
proceeds entirely without reference to the perturbed eigenvectors

|n) = |n0) + λ|n1) + λ2|n2) + · · ·

The method was used to reproduce the standard formulæ

E1
n = (n0|V |n0) : abbreviated Vnn (2.1)

E2
n = −

∑
m�=n

(n0|V |m0)(m0|V |n0)
E0

m − E0
n

: abbreviated −
∑
i �=n

VniVin

Din
(2.2)

and to produce (at (A23.3)) a formula

E3
n =

∑
i,j �=n

VniVijVjn

DinDjn
− E1

n ·
∑
i �=n

VniVin

D2
in

(2.3)

which I had been unable to discover in the literature, but which Oz Bonfim
has today informed me is posed as Problem 2 on page 136 of the 3rd edition
of Landau & Lifshitz’ Quantum Mechanics (it is absent from my 2nd edition).
Oz’s research has stimulated an interest in E4

n, and it is at his request that I
return to this subject.

1 “Perturbed spectra without pain,” (April ). I refer in these pages to
that essay as Part A.
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In the unperturbed eigenbasis the matrix

H
0 ≡ ‖(m0|H0|n0)‖ is diagonal

and its diagonal elements E0
n are presumed to be known. Also assumed in each

instance to be known are the matrix elements of

V ≡ ‖(m0|H0|n0)‖ ≡ ‖Vmn‖

Initially we assume the unperturbed spectrum
{
E0

n

}
to be non-degenerate, but

the method will ultimately permit that assumption to be relaxed. We take as
our assignment the development (1) of the roots of the equation

det
{

H
0 + λV − E I

}
= 0 (3)

which in Part A I contrive to accomplish in a way which makes sense even
when the matrices are ∞ -dimensional, and the characteristic polynomial a
“polynomial of ∞ order.”

Pattern of the argument, stripped of distracting details. Write

det
{

H
0 + λV − E I

}
= det

{
H

0 − E I
}
· det

{
I + λM

}
(4)

M ≡ (H
0 − E I)–1

V

det
{

H
0 − E I

}
=

∏
i

(E0
i − E )

and observe that the first factor, regarded as a function of E, has zeros at
precisely the (unperturbed spectral) points were the second factor becomes
singular; evidently some delicate cancellations must come into play if the
product is to vanish at perturbed spectral points.

Formal expansion of2

P (E) ≡
∏

i

(E0
i −E )

↑
E = E0 + λE1 + λ2E2 + · · ·

is straightforward in principle, but leads to an instance of the “partition
problem”—therefore to a superabundance of terms even in low order; one
obtains a result of the form

P (E) = P (E0) + λP (E0, E1) + λ2P (E0, E1, E2) + · · ·
≡ P0 + λP1 + λ2P2 + · · · (5)

2 It will be my practice to omit the subscript n from (1) in generic situations.
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Expansion of det
{

I + λM
}

is accomplished by appeal to an identity as
pretty as it is little known (and which makes formal sense even in the infinite
dimensional case):

det
{

I + λM
}

= 1 + λT1 + 1
2!λ

2

∣∣∣∣ T1 T2

1 T1

∣∣∣∣ + 1
3!λ

3

∣∣∣∣∣∣
T1 T2 T3

1 T1 T2

0 2 T1

∣∣∣∣∣∣ (6.1)

+ 1
4!λ

4

∣∣∣∣∣∣∣

T1 T2 T3 T4

1 T1 T2 T3

0 2 T1 T2

0 0 3 T1

∣∣∣∣∣∣∣
+ · · ·

≡ ∆0 + λ∆1 + 1
2!λ

2∆2 + 1
3!λ

3∆3 + 1
4!λ

4∆4 + · · · (6.2)

where direct evaluation of the determinants (or appeal to a recursion relation
that need not concern us) gives

∆0 = 1
∆1 = T1

∆2 = T 2
1 − T2

∆3 = T 3
1 − 3T1T2 + 2T3

∆4 = T 4
1 − 6T 2

1 T2 + 8T1T3 + 3T 2
2 − 6T4

∆5 = T 5
1 − 10T 3

1 T2 + 20T 2
1 T3 + 15T1(T 2

2 − 4T4) − 20T2T3 + 24T5

...




(7)

with Tp ≡ tr M
p.

We confront now the awkward fact that

M =
∥∥∥∥ Vij

Ei − E

∥∥∥∥ acquires λ-dependence from E (8)

So each Tp also does, and so finally does each ∆k. Suppose we were in possession
of the trace expansions

Tp = Tp0 + λTp1 + λ2Tp2 + · · · (9)

Insertion of those into (7), and of the results into (6.2), yields a series of the
form

det
{

I + λM
}

= 1 + λQ1 + λ2Q2 + · · · (10)

where, according to Mathematica,
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Q1 = T10 (11.1)

Q2 = 1
2

[
T 2

10 − T20 + 2T11

]
(11.2)

Q3 = 1
6

[
T 3

10 + 6T12 + T10(6T11 − 3T20) − 3T21 + 2T30

]
(11.3)

Q4 = 1
24

[
T 4

10 + 12T 2
11 + 24T13 + 6T 2

10(2T11 − T20) − 12T11T20

+ 3T 2
20 − 12T22 + 4T10(6T12 − 3T21 + 2T30) + 8T31 − 6T40

]
(11.4)

Q5 = 1
120

[
T 5

10 + 10T 3
10(2T11 − T20) + 10T 2

10(6T12 − 3T21 + 2T30)

+ 5T10(12T 2
11 + 24T13 − 12T11T20 + 3T 2

20 − 12T22 + 8T31 − 12T40)
+ 120T14 − 60T12T20 + 30T20T21 − 60T23 − 20T20T30

+ 20T11(6T12 − 3T21 + 2T30) + 40T32 − 30T41 + 24T50

]
(11.5)

...

Multiplication of (5) into (10) gives

det
{

H
0 + λV − E I

}
= P0 + λ

(
P1 + P0Q1

)
+ λ2

(
P2 + P1Q1 + P0Q2

)
+ λ3

(
P3 + P2Q1 + P1Q2 + P0Q3

)
+ λ4

(
P4 + P3Q1 + P2Q2 + P1Q3 + P0Q4

)
+ λ5

(
P5 + P4Q1 + P3Q2 + P2Q3 + P1Q4 + P0Q5

)

and to achieve (3) we must have

P0 = 0 (12.0)
P1 + P0Q1 = 0 (12.1)

P2 + P1Q1 + P0Q2 = 0 (12.2)
P3 + P2Q1 + P1Q2 + P0Q3 = 0 (12.3)

P4 + P3Q1 + P2Q2 + P1Q3 + P0Q4 = 0 (12.4)
P5 + P4Q1 + P3Q2 + P2Q3 + P1Q4 + P0Q5 = 0 (12.5)

...

The left side of (12.0) presents only E0 as an argument, and forces us to set

E0 = one of the unperturbed eigenvalues, call it E0
n (13)

The left side of (12.1) presents E0, E1: solve for E1 (i.e., for E1
n).

The left side of (12.1) presents E0, E1, E2: solve for E2 (i.e., for E2
n).

So it goes if E0
n is non-degenerate. As it turns out, the adjustments required

in the contrary case are made obvious by the detailed design of equations (12).



Finer particulars: Construction of the P-coefficients 5

Construction of the P-coefficients. The objects of present interest arose at (5),
where we had∏

i

(E0
i − E0 − λE1 − λ2E2 − · · ·) ≡ P0 + λP1 + λ2P2 + · · ·

Evidently

P0 =
∏

i

(E0
i − E0) : also called Π0 (14.0)

P1 = −E1Π1 (14.1)
P2 = −E2Π1 + E1E1Π2 (14.2)
P3 = −E3Π1 + 2E2E1Π2 − E1E1E1Π3 (14.3)
P4 = −E4Π1 + (2E3E1 + E2E2)Π2 − 3E2E1E1Π3 + E1E1E1E1Π4 (14.4)
P5 = −E5Π1 + (2E4E1 + 2E3E2)Π2 − (3E3E1E1 + 3E2E2E1)Π3

+ 4E2E1E1E1Π4 − E1E1E1E1E1Π5 (14.5)
P6 = etc.

where

Π1(E0) ≡ sum over all ways of striking one factor from P0

Π2(E0) ≡ sum over all distinct ways of striking two factors from P0

Π3(E0) ≡ sum over all distinct ways of striking three factors from P0
...

The boldface numerics are multinomial coefficients: they answer the question
“In how many distinct ways can the following E-factors be ordered?” The terms
that enter into the construction of Pn arise—one for one—from the distinct
partitions of n, and are p(n) in number (which is to say: their number grows
exponentially).

Each Πp(E0) is (for p > 0) a sum of products. Some of the summed
terms contain (E0

n−E0) as a factor, others don’t. We formalize the distinction,
writing

Π0(E0) = A1(E0) · (E0
n − E0)

Π1(E0) = A2(E0) · (E0
n − E0) + A1(E0) (15)

Π2(E0) = A3(E0) · (E0
n − E0) + A2(E0)

...

The expressions Ap(E0) are constructed this way: strike p factors from P0 in
all possible ways; abandon the expressions that contain (E0

n −E0)-factors; sum
the terms that survive. . .but that is of little consequence: the coefficients Ap

function in the present theory as formal placeholders; their numerical values
are, for realistic unperturbed spectra, typically infinite (though certainly finite
if H

0 is finite-dimensional).



6 Higher-order spectral perturbation

When (13) comes into play we will have

D ≡ Dnn ≡ (E0
n − E0)

∣∣∣
E0→E0

n

= 0

but it is vital that we hold that fact in suspension, for soon we will encounter
D–1-factors, and our ultimate success hinges on our ability to write D ·D–1 = 1.
Let (15) be abbreviated

Π0 = DA1

Π1 = A1 + DA2 (16)
Π2 = A2 + DA3

...

Returning with this information to (14) we obtain

P0 = DP01

P1 = P10 + DP11 (17)
P2 = P20 + DP21

...

where the leading index on refers to expansion in powers of λ, and the trailing
index to expansion in reciprocal powers of D. To facilitate further progress, we
make a

notational adjustment: Agree henceforth to write E1 for
E1

n, E2 for E2
n, etc. and to interpret superscripts to mean

true exponents: E3
1 will mean (E1

n)3, etc. We will be thus
released from the obligation of having to write expressions like
E1

nE1
nE1

n , which become unworkable in high order.

That understood, we introduce (16) into (14), and in the notation of (17) obtain

P01 = A1 (18.01)

P10 = −A1E1 (18.10)
P11 = −A2E1 (18.11)

P20 = −A1E2 + A2E
2
1 (18.20)

P21 = −A2E2 + A3E
2
1 (18.21)

P30 = −A1E3 + 2A2E1E2 − A3E
3
1 (18.30)

P31 = −A2E3 + 2A3E1E2 − A4E
3
1 (18.31)

P40 = −A1E4 + A2(E
2
2 + 2E1E3) − 3A3E

2
1E2 + A4E

4
1 (18.40)

P41 = −A2E4 + A3(E
2
2 + 2E1E3) − 3A4E

2
1E2 + A5E

4
1 (18.41)

P50 = −A1E5 + A2(2E2E3 + 2E1E4) (18.50)
− A3(3E1E

2
2 + 3E2

1E3) + 4A4E
3
1E2 − A5E

5
1

P51 = −A2E5 + A3(2E2E3 + 2E1E4) (18.51)
− A4(3E1E

2
2 + 3E2

1E3) + 4A5E
3
1E2 − A6E

5
1
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Trace expansions. From

Tp ≡ tr M
p with M ≡

∥∥∥∥ Vij

E0
i − E

∥∥∥∥
we obtain

T1(E) =
∑

i

Vii

E0
i − E

T2(E) =
∑
ij

VijVji

(E0
i − E)(E0

j − E)

T3(E) =
∑
ijk

VijVjkVki

(E0
i − E)(E0

j − E)(E0
k − E)...

Therefore

T1(E0
n + λE1

n + λ2E2
n + · · ·) =

∑
i

Vii

E0
i − E0

n

[
1 − λE1

n + λ2E2
n + · · ·

E0
i − E0

n

]–1

=
∑

i

Vii

Din

[
etc.

]–1

i
(19.1)

≡ T10 + λT11 + λ2T12 + · · ·

T2(E0
n + λE1

n + λ2E2
n + · · ·) =

∑
ij

VijVji

DinDjn

[
etc.

]–1

i

[
etc.

]–1

j
· (19.2)

≡ T20 + λT21 + λ2T22 + · · ·

T3(E0
n + λE1

n + λ2E2
n + · · ·) =

∑
ijk

VijVjkVki

DinDjnDkn

[
etc.

]–1

i

[
etc.

]–1

j

[
etc.

]–1

k
(19.3)

≡ T30 + λT31 + λ2T32 + · · ·
...

Entrusting the computational labor to Mathematica we obtain3

[
etc.

]–1

i
= 1 + λ

[
E1
D

in

]
+ λ2

[ E2
1

D2
in

+ E2
D

in

]
+ λ3

[ E3
1

D3
in

+ 2E1E2
D2

in

+ E3
D

in

]
+ λ4

[ E4
1

D4
in

+ 3E2
1E2

D3
in

+ 2E1E3+E2E2
D2

in

+ E4
D

in

]
+ λ5

[ E5
1

D5
in

+ 4E3
1E2

D4
in

+ 3E2
1E3+3E1E2

2
D3

in

+ 2E1E4+2E2E3
D2

in

+ E5
D

in

]
+ · · · (20)

3 The numerical factors on the right side the following expression enter for
the same partition-theoretic reason as was previously discussed.
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which becomes rapidly quite unwieldly when raised to powers, as (11) requires.
Expressions like

[
etc.

]–1

i

[
etc.

]–1

j
,

[
etc.

]–1

i

[
etc.

]–1

j

[
etc.

]–1

k
, . . . are unwieldly for an

identical reason.

Further complications—which turn out, however, to be the key to the
success of the determinantal method! —arise from the circumstance that some
of the energy denominators which enter into expressions like

∑
i

Vii

Din
,

∑
ij

VijVji

DinDjn
,

∑
ijk

VijVjkVki

DinDjnDkn
, . . .

vanish,4 causing the expressions themselves to become singular. It is to expose
the singularities that we write

∑
i

Vii

Din
=

∑
i �=n

Vii

Din
+

Vnn

D
(21.1)

∑
ij

VijVji

DinDjn
=

∑
ij �=n

VijVji

DinDjn
+ 2

∑
j �=n

VnjVjn

DDjn
+

VnnVnn

D2
(21.2)

∑
ijk

VijVjkVki

DinDjnDkn
=

∑
ijk �=n

VijVjkVki

DinDjnDkn
+ 3

∑
jk �=n

VnjVjkVkn

DDjnDkn
(21.3)

+ 3
∑
k �=n

Vnn · VnkVkn

D2Dkn
+

VnnVnnVnn

D3

...

where the numerics are binomial coefficients.

Additional powers of D–1 are brought into play when expressions like (20)
are introduced into the summands. To gain a sharpened sense of the particulars
we use (21) and (20) to obtain

T10 =
∑

i

Vii

Din
1 =

∑
i �=n

Vii

Din
+

Vnn

D
(22.1)

T11 =
∑

i

Vii

Din

[
E1

Din

]
= E1

{ ∑
i �=n

Vii

D2
in

+
Vnn

D2

}
(22.2)

T20 =
∑
ij

VijVji

DinDjn
1 =

∑
ij �=n

VijVji

DinDjn
+ 2

∑
j �=n

VnjVjn

DDjn
+

VnnVnn

D2
(22.3)

which when brought to (11.1) and (11.2) inform us that

Q1 = terms
1,0

+ 1
D

terms
1,1

Q2 = terms
2,0

+ 1
D

terms
2,1

+ 1
D2

terms
2,2

4 The assignment E0 �→ E0
n sends Di ≡ (E0

i − E0) �→ (E0
i − E0

n ) ≡ Din ,
which vanishes at i = n.
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This line of argument leads to the conclusion that

Q1 = Q10 + D−1Q11

Q2 = Q20 + D−1Q21 + D−2Q22 (23)
Q3 = Q30 + D−1Q31 + D−2Q32 + D−3Q33

...

where—as also at (17)—the leading index on refers to expansion in powers of
λ, and the trailing index to expansion in reciprocal powers of D.

Development of the double series

Tp ≡ tr M
p =

∑
i

λi Tpi (24.1)

Tpi =
p+i∑
q=0

TpiqD
−q (24.2)

(which feeds—by (11)—into the design of the Qiq) is tedious work. One of the
fruits of the discussion to which I now turn will be a precise description of the
details which actually contribute to perturbation theory in any specified order.

Distilled essence of the determinantal method. Return with (18) and (22) to
(12) and with the assistance of Mathematica obtain

0 =
[
P10 + P01Q11

]
+ D

[
P11 + P01Q10

]
≡ good stuff

1
+ D doomed stuff

1

0 =
[
P20 + P10Q10 + P11Q11 + P01Q21

]
+ D

[
P21 + P11Q10 + P01Q20

]
+ D−1

[
P10Q11 + P01Q22

]
≡ good stuff

2
+ D doomed stuff

2
+ D−1 null stuff

2,1

0 =
[
P30 + P20Q10 + P21Q11 + P10Q20 + P11Q21 + P01Q31

]
+ D

[
P31 + P21Q10 + P11Q20 + P01Q30

]
+ D−1

[
P20Q11 + P10Q21 + P11Q22 + P01Q32

]
+ D−2

[
P10Q22 + P01Q33

]
≡ good stuff

3
+ D doomed stuff

3
+ D−1 null stuff

3,1

+ D−2 null stuff
3,2

The doomed stuff is killed by the process D → 0. In Part A I provide
explicit demonstrations that

null stuff
2,1

= null stuff
3,1

= null stuff
3,2

= 0
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hold unconditionally, as consequences simply of the detailed construction of
those expressions. I do not know how to construct such arguments in the
general case, but will proceed in confidence that

null stuff = 0 in all cases (25)

since were it otherwise the right side of (4) would exhibit singularities which
are manifestly absent from the left side.

“Determinantal perturbation theory,” boiled down to its essence, resides
therefore in the following sequential statements:

good stuff
1

= 0

good stuff
2

= 0

good stuff
3

= 0

good stuff
4

= 0

good stuff
5

= 0

...




(26)

which can be looked upon as a sharpened version of (12). When using the
method in order p we need concern ourselves with trace expansions (first in
powers of λ, then in inverse powers of D) only to the extent necessitated by the
definitions of good stuff

k
: k = 1, 2, . . . , p. For future reference I record

here that

good stuff
1

= P10 + P01Q11 (27.1)

good stuff
2

= P20 + P10Q10 + P11Q11 + P01Q21 (27.2)

good stuff
3

= P30 + P20Q10 + P21Q11 + P10Q20 (27.3)
+ P11Q21 + P01Q31

good stuff
4

= P40 + P30Q10 + P31Q11 + P20Q20 (27.4)
+ P21Q21 + P10Q30 + P11Q31 + P01Q41

good stuff
5

= P50 + P40Q10 + P41Q11 + P30Q20 + P31Q21 (27.5)
+ P20Q30 + P21Q31 + P10Q40 + P11Q41 + P01Q51

Notice that advancing from one order to the next always brings two more
terms into play; by this measure, complexity grows (not exponentially but only)
linearly.

Evidently we need to possess descriptions of

P01

P10
and

Q11
to work in order p = 1

P01

P10 P11

P20

and Q10 Q11

Q21

to work in order p = 2
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P01

P10 P11

P20 P21

P30

and Q10 Q11

Q20 Q21

Q31

to work in order p = 3

P01

P10 P11

P20 P21

P30 P31

P40

and
Q10 Q11

Q20 Q21

Q30 Q31

Q41

to work in order p = 4

P01

P10 P11

P20 P21

P30 P31

P40 P41

P50

and

Q10 Q11

Q20 Q21

Q30 Q31

Q40 Q41

Q51

to work in order p = 5

The requisite P -data were produced already at (18). Detailed Q-data have yet
to be generated, but from (11) we know that the only Tpi of interest in that
connection are

T10 if we work in order p = 1

T10 T11

T20
if we work in order p = 2

T10 T11 T12

T20 T21

T30

if we work in order p = 3

T10 T11 T12 T13

T20 T21 T22

T30 T31

T40

if we work in order p = 4

T10 T11 T12 T13 T14

T20 T21 T22 T23

T30 T31 T32

T40 T41

T50

if we work in order p = 5 (28)

And it is gratifying to note that, once those terms have been packaged as
required by (11), their D–1-expansion need be carried only to first order. One
would, on the other hand, have to work in much more elaborate detail if one
sought to construct explicit demonstrations of all statements of type (25); it is by
abandoning that redundant exercise (which, however, provides valuable checks
on the accuracy of our work) that we have brought high-order perturbation
theory within the bounds of feasibility.
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Truncated double expansion of trace terms. Here I undertake to construct
equations of (compare (24)) the form

Tpi ≈ Tpi0 + Tpi1D
−1 (30)

where pi ranges on the values indicated at (26) and where ≈ signifies that
terms of orders D−2, D−3, . . .have been dismissed on the ground that in the
non-degenerage case they have nothing to tell us, are irrelevant to
determinantal perturbation theory (though of vital relevance to the verification
of (25)). Our (labor-intensive) computational program was anticipated at (22),
where we obtained results which—if, to reduce notational clutter, we adopt a
“summation convention” according to which

∑
i �=n

,
∑
ij �=n

,
∑

ijk �=n

, . . . will be tacitly understood

—can be expressed

T10 ≈ Vii

Din
+ VnnD−1

T11 ≈ E1
Vii

D2
in

T20 ≈ VijVji

DinDjn
+ 2

VnjVjn

Djn
D−1

Proceding similarly with the indispensable assistance of Mathematica, I
construct this extension of the preceding short list:

T10 ≈
{

1
Din

}
Vii + VnnD−1 (31.10)

T11 ≈
{

E1
1

D2
in

}
Vii (31.11)

T12 ≈
{

E2
1

1
D3

in

+ E2
1

D2
in

}
Vii (31.12)

T13 ≈
{

E3
1

1
D4

in

+ 2E1E2
1

D3
in

+ E3
1

D2
in

}
Vii (31.13)

T14 ≈
{

E4
1

1
D5

in

+ 3E2
1E2

1
D4

in

+ (2E1E3 + E2
2)

1
D3

in

+ E4
1

D2
in

}
Vii (31.14)

T20 ≈
{

1
DinDjn

}
VijVji + 2

{
1

Djn

}
VnjVjnD−1 (31.20)

T21 ≈
{

E1

[ 1
DinD2

jn

+
1

D2
inDjn

]}
VijVji + 2

{
E1

1
D2

jn

}
VnjVjnD−1 (31.21)
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T22 ≈
{

E2
1

[ 1
DinD3

jn

+
1

D2
inD2

jn

+
1

D3
inDjn

]
(31.22)

+ E2

[ 1
DinD2

jn

+
1

D2
inDjn

]}
VijVji

+ 2
{

E2
1

1
D3

jn

+ E2
1

D2
jn

}
VnjVjnD−1

T23 ≈
{

E3
1

[ 1
DinD4

jn

+
1

D2
inD3

jn

+
1

D3
inD2

jn

+
1

D4
inDjn

]
(31.23)

+ 2E1E2

[ 1
DinD3

jn

+
1

D2
inD2

jn

+
1

D3
inDjn

]

+ E3

[ 1
DinD2

jn

+
1

D2
inDjn

]}
VijVji

+ 2
{

E3
1

1
D4

jn

+ 2E1E2
1

D3
jn

+ E3
1

D2
jn

}
VnjVjnD−1

T30 ≈
{

1
DinDjnDkn

}
VijVjkVki + 3

{
1

DjnDkn

}
VnjVjkVknD−1 (31.30)

T31 ≈
{

E1

[ 1
D2

inDjnDkn

+
1

DinD2
jnDkn

+
1

DinDjnD2
kn

]}
VijVjkVki

+ 3
{

E1

[ 1
D2

jnDkn

+
1

DjnD2
kn

]}
VnjVjkVknD−1 (31.31)

T32 ≈
{

E2
1

[ 1
D3

inDjnDkn

+
1

DinD3
jnDkn

+
1

DinDjnD3
kn

(31.32)

+
1

DinD2
jnD2

kn

+
1

D2
inDjnD2

kn

+
1

D2
inD2

jnDkn

]

+ E2

[ 1
D2

inDjnDkn

+
1

DinD2
jnDkn

+
1

DinDjnD2
kn

]}
VijVjkVki

+ 3
{

E2
1

[ 1
D3

jnDkn

+
1

DjnD3
kn

+
1

D2
jnD2

kn

]

+ E2

[ 1
D2

jnDkn

+
1

DjnD2
kn

]}
VnjVjkVknD−1

T40 ≈
{

1
DinDjnDknDln

}
VijVjkVklVli (31.40)

+ 4
{

1
DjnDknDln

}
VnjVjkVklVlnD−1
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T41 ≈
{

E1

[ 1
D2

inDjnDknDln

+
1

DinD2
jnDknDln

(31.41)

+
1

DinDjnD2
knDln

+
1

DinDjnDknD2
ln

]}
VijVjkVklVli

+ 4
{

E1

[ 1
D2

jnDknDln

+
1

DjnD2
knDln

+
1

DjnDknD2
ln

]}
VnjVjkVklVlnD−1

T50 ≈ 1
DinDjnDknDlnDmn

VijVjkVklVlmVmi (31.50)

+ 5
1

DjnDknDlnDmn

VnjVjkVklVlmVmnD−1

We note—as a weak check on the accuracy of those statements—that every
term is physically dimensionless.

Equations (11) ask us to multiply the Tpi in various ways. . . and this, unless
we are careful, can lead to deep confusion. Look, for example, to the product
T 2

10T11 encountered in (11.4): were we to proceed literally from (31.10) and
(31.11) we—Mathematica—would obtain

T 2
10T11 ≈ E1

V 3
ii

D4
in

+ 2E1
V 2

iiVnn

D3
in

D−1

which is incorrect: we have displayed as a sum of products what is really a
product of sums—this because we have not distinguished the running index in
one sum from the running index in the other. And we would soon run out
of alphabet if we attempted (by hand) to maintain the indicial distinctions in
question. I propose, therefore, to give each sum its own distinctive name: I will
write

T10 ≈ Σ10 + σ10D
−1 (32.10)

T11 ≈ E1Σ11 (32.11)
T12 ≈ E2

1Σ12 + E2Σ11 (32.12)
T13 ≈ E3

1Σ13 + 2E1E2Σ12 + E3Σ11 (32.13)
T14 ≈ E4

1Σ14 + 3E2
1E2Σ13 + (2E1E3 + E2

2)Σ12 + E4Σ11 (32.14)
T20 ≈ Σ20 + σ20D

−1 (32.20)
T21 ≈ E1Σ21 + E1σ21D

−1 (32.21)
T22 ≈ E2

1Σ22 + E2Σ21 +
{
E2

1σ22 + E2σ21

}
D−1 (32.22)

T23 ≈ E3
1Σ23 + 2E1E2Σ22 + E3Σ21 (32.23)

+
{
E3

1σ23 + 2E1E2σ22 + E3σ21

}
D−1
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T30 ≈ Σ30 + σ30D
−1 (32.30)

T31 ≈ E1Σ31 + E1σ31D
−1 (32.31)

T32 ≈ E2
1Σ32 + E2Σ31 +

{
E2

1σ32 + E2σ31

}
D−1 (32.32)

T40 ≈ Σ40 + σ40D
−1 (32.40)

T41 ≈ E1Σ41 + E1σ41D
−1 (32.41)

T50 ≈ Σ50 + σ50D
−1 (32.50)

and look to (31) for the definitions of the Σ’s and σ’s, which are, in effect,
“encapsulated sums.” Equations (32) show (31) to have been more highly
patterned than you may at first have noticed, and from the precision of that
pattern we gain confidence in the accuracy of (31/32).

Construction of the truncated Q-coefficients. We introduce (32) into (11),
expand in powers of D−1, abandon the terms of orders D−2, D−3, . . . and,
consigning all the labor to Mathematica, obtain

Q10 ≈ Σ10 (33.10)
Q11 ≈ σ10 (33.11)
Q20 ≈ E1Σ11 + 1

2

[
Σ2

10 − Σ20

]
(33.20)

Q21 ≈ σ10Σ10 − 1
2σ20 (33.21)

Q30 ≈ E2
1Σ12 + E1

[
Σ10Σ11 − 1

2Σ21

]
+ E2Σ11 (33.30)

+
[
1
6Σ3

10 − 1
2Σ10Σ20 + 1

3Σ30

]
Q31 ≈ E1

[
σ10Σ11 − 1

2σ21

]
(33.31)

+
[
1
3σ30 + 1

2 (σ10Σ2
10 − σ20Σ10 − σ10Σ20)

]

The descriptions of

Q40 ≈ sum of 17 terms
Q41 ≈ sum of 16 terms
Q50 ≈ sum of 37 terms
Q51 ≈ sum of 41 terms

are so uninformatively complicated that they will be reserved for an appendix.

Final assembly. Bring the Q� � of (33) and the P� � of (18) to (27), and obtain

good stuff
1

= −A1

{
E1 − σ10

}
good stuff

2
=

(
A2E1 − A1Σ10

){
E1 − σ10

}
− A1

{
E2 + 1

2σ20

}
good stuff

3
= 1

2

(
− A3E

2
1 − A2(σ20 − 2E1Σ10)

− A1(σ21 + Σ2
10 + 2E1Σ11 − Σ10)

){
E1 − σ10

}
+ 1

4

(
A2(2E2 − σ10) − A1Σ10

){
E2 + 1

2σ20

}
− A1

{
E3 + 1

2σ10σ21 − 1
3σ30

}
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The detail is distracting; the Mathematica commands themselves seem in this
instance to be more instructive: ask for good1 and get

−A1

(
E1 − σ10

)
Enter the command Simplify[ good2, E1 − σ10 =||| 0 ] and get

−A1

(
E2 + 1

2σ20

)
Command Simplify[ good3, {E1 − σ10 =||| 0, E2 + 1

2σ20 =||| 0}] and get

−A1

(
E3 + 1

2σ10σ21 − 1
3σ30

)
The next two generations of this sequential procedure give

−A1

(
E4 − 1

4σ20σ21 + 1
2E2

1σ22 − 1
3E1σ31 + 1

4σ40

)
,

−A1

(
E5 + 1

2E3σ21 + E2σ10σ22 + 1
2σ3

10σ23 − 1
3E2σ31 − 1

3σ2
10σ32

+ 1
4σ10σ41 − 1

5σ50 + 1
4σ40Σ10 + 1

4σ10Σ40

)
The assumed non-degeneracy of E0

n implies A1 = 0, so on the basis of (26) we
have5

E1
n = σ10 (34.1)

E2
n = − 1

2σ20 (34.2)

E3
n = − 1

2σ10σ21 + 1
3σ30 (34.3)

E4
n = + 1

4σ20σ21 − 1
2 (E1)2σ22 + 1

3E1σ31 − 1
4σ40 (34.4)

E5
n = − 1

2E3σ21 − E2σ10σ22 − 1
2σ3

10σ23 + 1
3E2σ31 + 1

3σ2
10σ32

− 1
4σ10σ41 + 1

5σ50 − 1
4σ40Σ10 − 1

4σ10Σ40 (34.5)

Comparison of (32) with (31) provides these definitions:

σ10 ≡ Vnn

σ20 ≡ 2
{

1
Djn

}
VnjVjn ; σ21 ≡ 2

{
1

D2
jn

}
VnjVjn

σ30 ≡ 3
{

1
DjnDkn

}
VnjVjkVkn

So the first three of equations (34), when translated into orthodox notation,
read

E1
n = Vnn (35.1)

E2
n = −

∑
j �=n

VnjVjn

Djn
(35.2)

E3
n =

∑
jk �=n

VnjVjkVkn

DjnDkn
− Vnn ·

∑
j �=n

VnjVjn

D2
jn

(35.3)

5 The right sides of (34) are written precisely as Mathematica produced
them, but on the left I have reinstated Ep �→ Ep

n where p refers to perturbational
order—not to a power. But E2

1 on the right side of (34.4) is a power.
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These are precisely the results reported at (2): the first two equations can be
found in any introductory quantum text,6 while—as reported earlier—(35.3)
can be found on page 136 of Landau & Lifshitz’ 3rd revised edition (). An
alternative formulation of the same result appears at (25.12) in Hans Bethe &
Edwin Salpeter, Quantum Mechanics of One- and Two-Electron Atoms ().

Extending our σ-list

σ22 ≡ 2
1

D3
jn

VnjVjn

σ31 ≡ 3
[ 1
D2

jnDkn

+
1

DjnD2
kn

]
VnjVjkVkn

σ40 ≡ 4
1

DjnDknDln
VnjVjkVklVln

we find that in 4th order

E4
n =

[∑
i �=n

1
Din

VniVin

][ ∑
j �=n

1
D2

jn

VnjVjn

]
− V 2

nn

∑
i �=n

1
D3

jn

VnjVjn

+ Vnn ·
∑
ij �=n

[ 1
D2

inDjn

+
1

DinD2
jn

]
VniVijVjn (35.4)

−
∑

ijk �=n

1
DinDjnDkn

VniVijVjkVkn

E5
n =

{
expression based on (34.5) which could be
spelled out in similarly orthodox detail. . .

(35.5)

. . .but I won’t. My confidence in the accuracy of (34/35) is high, yet not so
high but what I would have interest in the results achieved by someone with the
patience to retrace my steps. I would be particularly interested in verification
of my claim (at (34.5)) that Σ -terms make their first appearance in 5th order.

E -factors appear on the right sides of (34.4) and (34.5). Replace those
with their upstream sigma-equivalents, then count terms. Find

1 term in 1st order
1 term in 2nd order
2 terms in 3rd order
4 terms in 4th order
10 terms in 5th order

We would, on this weak evidence, not be surprised to encounter ∼ 20 terms in
6th order.

6 See, for example, the boxed equations (6.9) and (6.14) in David Griffiths’
Introduction to Quantum Mechanics ().
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Discussion. “Perturbed Spectra without ∧
it says here

Pain” (Part A) was essentially a
notebook—a record of my activity as, for the first time, I explored an idea that
had come to mind during the writing of Chapter One of my Advanced Quantum
Topics ().7 My effort here has been to demonstrate how the technique
developed there can be used to generate results of higher perturbative order.
To that end, I have been—necessarily—at pains to expose more clearly the
algorithmic essentials of the method. I have, for obvious expository reasons,
set details down upon the page. . .but the point that has impressed me most
strongly is that in practical application of the method one need not concern
oneself with those details; one can allow them to float unseen in the mind of
Mathematica.

If E0
n is degenerate then the placeholders Ai introduced at (15) acquire

D-factors, with consequences that ripple downstream but which remain entirely
susceptible to algorithmic description along the same basic lines. I have sketched
how this works in Part A, but have elected not to pursue the topic here; I
hope to construct a detailed account of “determinantal perturbation theory of
degenerate spectra” on another occasion. . . or better: to persuade a student to
do so!

Acknowledgements. This work has required very nearly the full limit of my
patience. David Griffiths was good enough to read Part A very closely and
critically, and I have been sustained by his expressed interest in the work. And
I am indebted to Oz Bonfim for inspiring me to revisit to this topic, so far
removed from my normal spheres of activity.

7 On page 40 I record my “regret that I must, on this occasion, leave further
details to the delight of the curious reader.”
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Truncated Q-coefficients of higher order. Here I make good my promise to extend
to 4th and 5th orders the results listed at (33). . . though the exercise serves no
constructive purpose: such information need not be brought into the light of
day, is best allowed to remain within Mathematica’s silicon mind. I have made
no attempt to organize the terms, but present them in the sequence selected by
Mathematica.

Q40 = 1
24Σ4

10 + E3Σ11 + E2Σ10Σ11 + 1
2E1Σ2

10Σ11 + 1
2E2

1Σ2
11 + E1E2Σ12

+ E2
1Σ10Σ12 + E3

1Σ13 − 1
4Σ2

10Σ20 − 1
2E1Σ11Σ20 + 1

8Σ2
20 − 1

2E2Σ21

− 1
2E1Σ10Σ21 − 1

2E2
1Σ22 + 1

3Σ10Σ30 + 1
3E1Σ31 − 1

4Σ40

Q41 = − 1
2E2σ21 − 1

2E2
1σ22 + 1

3E1σ31 − 1
4σ40 − 1

2E1σ21Σ10 + 1
3σ30Σ10

− 1
4σ20Σ2

10 + 1
6σ10Σ3

10 + E2σ10Σ11 − 1
2E1σ20Σ11 + E1σ10Σ10Σ11

+ E2
1σ10Σ12 + 1

4σ20Σ20 − 1
2σ10Σ10Σ20 − 1

2E1σ10Σ21 + 1
3σ10Σ30

Q50 = 1
120Σ5

10 + E4Σ11 + E3Σ10Σ11 + 1
2E2Σ2

10Σ11 + 1
6E1Σ3

10Σ11 + E1E2Σ2
11

+ 1
2E2

1Σ10Σ2
11 + E2

2Σ12 + 2E1E3Σ12 + E1E2Σ10Σ12 + 1
2E2

1Σ2
10Σ12

+ E3
1Σ11Σ12 + 3E2

1E2Σ13 + E3
1Σ10Σ13 + E4

1Σ14 − 1
12Σ3

10Σ20

− 1
2E2Σ11Σ20 − 1

2E1Σ10Σ11Σ20 − 1
2E2

1Σ12Σ20 + 1
8Σ10Σ2

20 − 1
2E3Σ21

− 1
2E2Σ10Σ21 − 1

4E1Σ2
10Σ21 − 1

2E2
1Σ11Σ21 + 1

4E1Σ20Σ21

− E1E2Σ22 − 1
2E2

1Σ10Σ22 − 1
2E3

1Σ23 + 1
6Σ2

10Σ30 + 1
3E1Σ11Σ30

− 1
6Σ20Σ30 + 1

3E2Σ31 + 1
3E1Σ10Σ31 + 1

3E2
1Σ32 − 1

2Σ10Σ40

− 1
4E1Σ41 + 1

5Σ50

Q51 = − 1
2E3σ21 − E1E2σ22 − 1

2E3
1σ23 + 1

3E2σ31 + 1
3E2

1σ32 − 1
4E1σ41 + 1

5σ50

− 1
2E2σ21Σ10 − 1

2E2
1σ22Σ10 + 1

3E1σ31Σ10 − 1
2σ40Σ10 − 1

4E1σ21Σ2
10

+ 1
6σ30Σ2

10 − 1
12σ20Σ3

10 + 1
24σ10Σ4

10 + E3σ10Σ11 − 1
2E2σ20Σ11

− 1
2E2

1σ21Σ11 + 1
3E1σ30Σ11 + E2σ10Σ10Σ11 − 1

2E1σ20Σ10Σ11

+ 1
2E1σ10Σ2

10Σ11 + 1
2E2

1σ10Σ2
11 + E1E2σ10Σ12 − 1

2E2
1σ20Σ12

+ E2
1σ10Σ10Σ12 + E3

1σ10Σ13 + 1
4E1σ21Σ20 − 1

6σ30Σ20

+ 1
4Σ20Σ10Σ20 − 1

4σ10Σ2
10Σ20 − 1

2E1σ10Σ11Σ20 + 1
8σ10Σ2

20

− 1
2E2σ10Σ21 + 1

4E1σ20Σ21 − 1
2E1σ10Σ10Σ21 − 1

2E2
1σ10Σ22

− 1
6σ20Σ30 + 1

3σ10Σ10Σ30 + 1
3E1σ10Σ11 − 1

2σ10Σ40

Such are the terms which Mathematica has been happy to multiply together
and combine in a great variety of ways to achieve final results which we now
recognize to be astounding in their simplicity !

“Determinantal spectral perturbation theory” provides what is from a
mathematical viewpoint an elementary exercise in formal series manipulation,
capable in principal of being extended to any order, but computationally so
dense that its practical cultivation was virtually unthinkable prior to about
 June , when the first version of Mathematica was released.


